Tuesday, December 19, 2023

Circles

Triangle Multiple choice questions based Online Test
Useful for competitive aspirants and schooling students of class 10. 
To participate into the test open the link below
๐Ÿ‘‡

To watch the video lecture open the link below
๐Ÿ‘‡

Thursday, December 14, 2023

Triangle

Triangle Multiple choice questions based Online Test
Useful for competitive aspirants and schooling students of class 10. 
To participate into the test open the link below
๐Ÿ‘‡

Thales Theorem
Statement and prove.
Watch the video lecture
To watch click the link below
๐Ÿ‘‡

Theorem 6.2
Useful for Schooling students/Competitive Aspirants
To watch click the link below 
๐Ÿ‘‡

Friday, November 10, 2023

เค•ाเคฒ เคชเคฐीเค•्เคทा (Clock And Calendar Test)

เค•ाเคฒ เคชเคฐीเค•्เคทा (Clock And Calendar Test) เคถाเคฐ्เคŸ เคŸ्เคฐिเค• เค”เคฐ เค‰เคฆเคนाเคฐเคฃ

เค•ाเคฒ เคชเคฐीเค•्เคทเคฃ เคฎें เค†เคชเคธे เค•ैเคฒेเคฃ्เคกเคฐ, เค˜เฅœी เค”เคฐ เคธเคฎเคฏ เคธंเคฌंเคงी เคช्เคฐเคถ्เคจ เคชूเค›े เคœाเคคे เคนैं। เค‡เคธเค•े เคฒिเค เค†เคชเค•ो เค•ैเคฒेเคฃ्เคกเคฐ, เค˜เฅœी เค”เคฐ เคธเคฎเคฏ เค•ा เคœ्เคžाเคจ เคชूเคฐ्เคฃเคคः เคนोเคจा เคšाเคนिเค। เค•ुเค› เค†เคตเคถ्เคฏเค• เคœाเคจเค•ाเคฐिเคฏाँ เคจिเคฎ्เคจเคฒिเค–िเคค เคนैं:

  • เคธเคช्เคคाเคน เคฎें เคธाเคค เคฆिเคจ เคนोเคคे เคนैं – เคฐเคตिเคตाเคฐ, เคธोเคฎเคตाเคฐ, เคฎंเค—เคฒเคตाเคฐ, เคฌुเคงเคตाเคฐ, เคฌृเคนเคธ्เคชเคคिเคตाเคฐ, เคถुเค•्เคฐเคตाเคฐ เคคเคฅा เคถเคจिเคตाเคฐ।
  • เคเค• เคตเคฐ्เคท เคฎें เคฌाเคฐเคน เคฎเคนीเคจे เคนोเคคे เคนैं – เคœเคจเคตเคฐी (31 เคฆिเคจ), เคซเคฐเคตเคฐी (28 เคฏा 29 เคฆिเคจ), เคฎाเคฐ्เคš (31 เคฆिเคจ), เค…เคช्เคฐैเคฒ (30 เคฆिเคจ), เคฎเคˆ (31 เคฆिเคจ), เคœूเคจ (30 เคฆिเคจ), เคœुเคฒाเคˆ (31 เคฆिเคจ), เค…เค—เคธ्เคค (31 เคฆिเคจ), เคธिเคคเคฎ्เคฌเคฐ (30 เคฆिเคจ), เค…เค•्เคŸूเคฌเคฐ (31 เคฆिเคจ), เคจเคตเคฎ्เคฌเคฐ (30 เคฆिเคจ), เคฆिเคธเคฎ्เคฌเคฐ (31 เคฆिเคจ)।
  • เคฏเคฆि เค•ोเคˆ เคตเคฐ्เคท 4 เคธे เคชूเคฐ्เคฃเคคः เคตिเคญाเคœिเคค เคนो เคœाเคคा เคนै, เคคो เคตเคน เคตเคฐ्เคท ‘เคฒीเคช เคตเคฐ्เคท’ เค•เคนเคฒाเคคा เคนै।
  • เคธाเคงाเคฐเคฃเคคः เคซเคฐเคตเคฐी 28 เคฆिเคจ เค•ा เคนोเคคा เคนै, เคชเคฐเคจ्เคคु เคฒीเคช เคตเคฐ्เคท เคฎें เคซเคฐเคตเคฐी 29 เคฆिเคจ เค•ा เคนोเคคा เคนै।
  • เคเค• เคตเคฐ्เคท เคฎें 52 เคธเคช्เคคाเคน เคคเคฅा เคเค• เคฆिเคจ เคนोเคคे เคนैं เคคเคฅा เคฒीเคช เคตเคฐ्เคท เคฎें 52 เคธเคช्เคคाเคน เคคเคฅा เคฆो เคฆिเคจ เคนोเคคे เคนैं।
  • เคฆिเคจों เค•ी เคธंเค–्เคฏा เค•ो เคธाเคค เคธे เคญाเค— เคฆेเคจे เคชเคฐ เคœो เคถेเคท เคฌเคšเคคा เคนै, เค‰เคธे เคตिเคทเคฎ เคฆिเคจ เค•เคนเคคे เคนैं।
  • เคเค• เคฆिเคจ เคฏा เคตाเคฐ เค•ी เคชुเคจเคฐाเคตृเคค्เคคि เคช्เคฐเคค्เคฏेเค• 7, 14, 21, 28, … 364 เคฆिเคจों เค•े เคฌाเคฆ เคนोเคคी เคนै।
  • เค˜เฅœी เค•ी เคธूเค‡เคฏाँ เคœเคฌ เค…เคชเคจे เคตृเคค्เคคाเค•ाเคฐ เคฎाเคฐ्เค— เคชเคฐ เคเค• เคชूเคฐ्เคฃ เคšเค•्เค•เคฐ เคฒเค—ाเคคी เคนै, เคคเคฌ เค‰เคจ्เคนें 360° เค˜ूเคฎเคจा เคชเฅœเคคा เคนै।
  • เคเค• เคฎिเคจเคŸ เค•ी เคฆूเคฐी 6° เค•े เคฌเคฐाเคฌเคฐ เคนोเคคा เคนै।
  • เคœเคฌ เคฎिเคจเคŸ เค•ी เคธूเคˆ เคเค• เคฎिเคจเคŸ เค•ी เคฆूเคฐी เคคเคฏ เค•เคฐเคคी เคนै, เคคो เค˜เคฃ्เคŸे เค•ी เคธूเคˆ 1/2° เค•े เคฌเคฐाเคฌเคฐ เค†เค—े เคฌเฅ เคœाเคคी เคนै।
  • เคเค• เค˜เคฃ्เคŸा เคฎें 60 เคฎिเคจเคŸ เคคเคฅा 1 เคฎिเคจเคŸ เคฎें 60 เคธेเค•เคฃ्เคก เคนोเคคे เคนैं।
  • เคช्เคฐเคค्เคฏेเค• เคเค• เค˜เคฃ्เคŸे เคฎें เคฎिเคจเคŸ เค•ी เคธूเคˆ เค˜เคฃ्เคŸे เค•ी เคธूเคˆ เคธे 55 เคฎिเคจเคŸ เคฆूเคฐी เค†เค—े เคฌเฅ เคœाเคคी เคนै।
  • เคช्เคฐเคค्เคฏेเค• เค˜เคฃ्เคŸे เคฎें เคฆोเคจों เคธूเค‡เคฏाँ เคเค• เคนी เคฆिเคถा เคฎें เคเค• เคฌाเคฐ เคฎिเคฒเคคी เคนैं, เคฒेเค•िเคจ 12 เค˜เคฃ्เคŸें เคฎें 11 เคฌाเคฐ เคคเคฅा 24 เค˜เคฃ्เคŸे เคฎें 22 เคฌाเคฐ เคฎिเคฒเคคी เคนैं।
  • เคช्เคฐเคค्เคฏेเค• เค˜เคฃ्เคŸे เคฎें เคฆोเคจों เคธूเค‡เคฏाँ เค•ेเคตเคฒ เคเค• เคฌाเคฐ เคตिเคชเคฐीเคค เคฆिเคถा เคฎें เคนोเคคी เคนैं, เคฒेเค•िเคจ 12 เค˜เคฃ्เคŸे เคฎें 11 เคฌाเคฐ เคคเคฅा 24 เค˜เคฃ्เคŸे เคฎें 22 เคตिเคชเคฐीเคค เคนोเคคी เคนैं।
  • เคช्เคฐเคค्เคฏेเค• เค˜เคฃ्เคŸे เคฎें เคฆोเคจों เคธूเค‡เคฏाँ เคฆो เคฌाเคฐ เคธเคฎเค•ोเคฃ เคฌเคจाเคคी เคนैं, เคฒेเค•िเคจ 12 เค˜เคฃ्เคŸे เคฎें 24 เคฌाเคฐ เคชเคฐเคธ्เคชเคฐ เคธเคฎเค•ोเคฃ เคฌเคจाเคคी เคนैं।
  • เคช्เคฐเคค्เคฏेเค• เค˜เคฃ्เคŸे เคฎें เคฆोเคจों เคธूเค‡เคฏाँ เคฆो เคฌाเคฐ เคธเคฎเค•ोเคฃ เคฌเคจाเคคी เคนैं เคคเคฅा เค‡เคธ เคฆเคถा เคฎें เคฆोเคจों เคธूเค‡เคฏों เค•े เคฌीเคš เค•ी เคฆूเคฐी 15 เคฎिเคจเคŸ เค•े เคฌเคฐाเคฌเคฐ เคนोเคคी เคนै।

เคชूเค›े เคœाเคจे เคตाเคฒे เคช्เคฐเคถ्เคจों เคชเคฐ เคเค• เคฆृเคท्เคŸि

เค‰เคฆाเคนเคฐเคฃ 1. เคฏเคฆि เค•िเคธी เคฎเคนीเคจे เค•ी เคคीเคธเคฐी เคคाเคฐीเค– เค•ो เคฎंเค—เคฒเคตाเคฐ เคนै, เคคो เค‰เคธी เคฎเคนीเคจे เค•ी 27 เคคाเคฐीเค– เคธे เคšाเคฐ เคฆिเคจ เคชเคนเคฒे เค•ौเคจ-เคธा เคฆिเคจ เคนोเค—ा?

  1. เคฎंเค—เคฒเคตाเคฐ
  2. เคธोเคฎเคตाเคฐ
  3. เคฌुเคงเคตाเคฐ
  4. เคฐเคตिเคตाเคฐ

เคนเคฒ (2): 27 – 3 = 24

เคตिเคทเคฎ เคฆिเคจों เค•ी เค•ुเคฒ เคธंเค–्เคฏा = 3

เคฎंเค—เคฒเคตाเคฐ + 3 ⇒ เคถुเค•्เคฐเคตाเคฐ – 4 ⇒ เคธोเคฎเคตाเคฐ

เค‰เคฆाเคนเคฐเคฃ 2. เคช्เคฐเค•ाเคถ เค•ो เคฏाเคฆ เคนै เค•ि เค‰เคธเค•े เคชिเคคाเคœी เค•ा เคœเคจ्เคฎเคฆिเคจ 13 เค”เคฐ 16 เค…เคช्เคฐैเคฒ เค•े เคฌीเคš เค•िเคธी เคฆिเคจ เคนै, เคœเคฌเค•ि เค‰เคธเค•ी เคฌเคนเคจ เค•ो เคฏाเคฆ เคนै เค•ि เค‰เคธเค•े เคชिเคคाเคœी เค•ा เคœเคจ्เคฎ-เคฆिเคจ 14 เค…เคช्เคฐैเคฒ เค•े เคฌाเคฆ เคฒेเค•िเคจ 17 เค…เคช्เคฐैเคฒ เค•े เคชเคนเคฒे เค•िเคธी เคฆिเคจ เคนै। เคฌเคคाเคँ เค•ि เค‡เคจเค•े เคชिเคคाเคœी เค•ा เคœเคจ्เคฎ เคฆिเคจ เค•िเคธ เคฆिเคจ เค•ो เคนै?

  1. 14 เค…เคช्เคฐैเคฒ
  2. 15 เคฏा 16 เค…เคช्เคฐैเคฒ
  3. 14 เคฏा 15 เค…เคช्เคฐैเคฒ
  4. 15 เค…เคช्เคฐैเคฒ

เคนเคฒ (4):

เค…เคคः, เค…เคญीเคท्เคŸ เคคिเคฅि ⇒ 15 เค…เคช्เคฐैเคฒ।

เคšूँเค•ि เคฆोเคจों เค•เคฅเคจाเคจुเคธाเคฐ 13 เค”เคฐ 14 เค•े เคฌाเคฆ เคเคตं 16 เคคเคฅा 17 เค•े เคชเคนเคฒे เคตो เคคिเคฅि เคนै। เค…เคฐ्เคฅाเคค् 13, 14, 16 เคเคตं 17 เคฏे เคคिเคฅिเคฏाँ เค…เคฎाเคจ्เคฏ เคนो เคœाเคँเค—ी। เค‡เคธเคฒिเค เค…เคฌ เคนเคฎ เคฆेเค–ेंเค—े เค•ि 14 เคเคตं 16 เค•े เคฌीเคš เค•ौเคจ เคธी เคคिเคฅि เคนै। เคนเคฎ เคœाเคจเคคे เคนैं เค•ि 14 เคเคตं 16 เค•े เคฌीเคš เคฎें เค•ेเคตเคฒ 15 เคเค• เคคिเคฅि เคนै เคคเคฅा เคฆोเคจों เค•เคฅเคจों เคฎें เคญी เค•ेเคตเคฒ 15 เคนी เคเค• เคเคธी เคคिเคฅि เคนै เคœो เค•ि เค‰เคญเคฏเคจिเคท्เค  เคนै।

เคธूเค•्เคท्เคฎ เคตिเคงि

เค…เคญीเคท्เคŸ เคคिเคฅि = เคฆोเคจों เคคिเคฅिเคฏों เคฎें, ‘เค•े เคฌाเคฆ’ เคฎें เคช्เคฐเคฏुเค•्เคค เคคिเคฅिเคฏों เคฎें เคธे เคฌเฅœी เคคिเคฅि + 1

= 14 + 1 ⇒ 15 เคฏा

เค…เคญीเคท्เคŸ เคคिเคฅि = เคฆोเคจों เคคिเคฅिเคฏों เคฎें, ‘เค•े เคชเคนเคฒे’ เคช्เคฐเคฏुเค•्เคค เคคिเคฅिเคฏों เคฎें เคธे เค›ोเคŸी เคคिเคฅि – 1

= 16 – 1 ⇒ 15

เค…เคคः เคช्เคฐเค•ाเคถ เค•े เคชिเคคाเคœी เค•ा เคœเคจ्เคฎ-เคฆिเคจ 15 เค…เคช्เคฐैเคฒ เค•ो เคนै।

เค‰เคฆाเคนเคฐเคฃ 3. เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ 8:35 เคฌเคœे เค–ेเคฒ เค•े เคฎैเคฆाเคจ เคฎें เคชเคนुँเคšे। เคฐाเคœेเคถ 45 เคฎिเคจเคŸ เคฆेเคฐ เคธे เคชเคนुँเคšा เค”เคฐ เค‡เคธ เคช्เคฐเค•ाเคฐ เคตเคน เคช्เคฐเคถिเค•्เคทเคฃ เค•े เคธเคฎเคฏ เคธे 15 เคฎिเคจเคŸ เคฆेเคฐ เคฅा। เคฌเคคाเคँ เค•ि เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ เคธे เค•िเคคเคจे เคฎिเคจเคŸ เคชเคนเคฒे เคชเคนुँเคšे เคฅे?

  1. 15 เคฎिเคจเคŸ
  2. 30 เคฎिเคจเคŸ
  3. 45 เคฎिเคจเคŸ
  4. 25 เคฎिเคจเคŸ

เคนเคฒ (2): เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ เค•े เคชเคนुँเคšเคจे เค•ा เคธเคฎเคฏ → 8:35

เคฐाเค•ेเคถ 45 เคฎिเคจเคŸ เคฆेเคฐ เคธे เคชเคนुँเคšा → +45 เคฎिเคจเคŸ

∴ เคฐाเค•ेเคถ เค•े เคชเคนुँเคšเคจे เค•ा เคธเคฎเคฏ = 9:20

เคฐाเค•ेเคถ เคช्เคฐเคถिเค•्เคทเคฃ เค•े เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ เคธे เคฆेเคฐ → -15 เคฎिเคจเคŸ

∴ เคช्เคฐเคถिเค•्เคทเคฃ เค•ा เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ = 9:05

เคšूँเค•ि เคช्เคฐเคถिเค•्เคทเคฃ เค•ा เคจिเคฐ्เคงाเคฐเคฃ เคธเคฎเคฏ 9:05 เคนै, เค”เคฐ เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ 8:35 เคฎें เคนी เคชเคนुँเคš เค—เคฏे เคฅे।

เค…เคคः เคตे เคช्เคฐเคถिเค•्เคทเคฃ เค•े เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ เคธे (9:05 – 8:35 ⇒ 30) 30 เคฎिเคจเคŸ เคชเคนเคฒे เคชเคนुँเคšे เคฅे।

เคšूँเค•ि เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ 8:35 เคฌเคœे เคชเคนुँเคšे เคนैं เค”เคฐ เคฐाเค•ेเคถ เค‰เคจเคธे 45 เคฎिเคจเคŸ เคฆेเคฐ เคธे เคชเคนुँเคšा เคฏाเคจी เคฐाเค•ेเคถ (8:35 + 45 = 9:20) 9:20 เคฌเคœे เคชเคนुँเคšा เคซिเคฐ เคญी เคตเคน เคช्เคฐเคถिเค•्เคทเคฃ เค•े เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ เคธे 15 เคฎिเคจเคŸ เคตिเคฒเคฎ्เคฌ เคฅा, เคฏाเคจी เคช्เคฐเคถिเค•्เคทเคฃ เค•ा เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ (9:20 – 15 = 9:05 =) 9:05 เคฌเคœे เคนै। เคšूँเค•ि เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ เค•े เคชเคนुँเคšเคจे เค•ा เคธเคฎเคฏ 8:35 เคฌเคœे เคนै। เค…เคคः เคช्เคฐเคถिเค•्เคทเค• เคฎเคนोเคฆเคฏ เคจिเคฐ्เคงाเคฐिเคค เคธเคฎเคฏ (9:05 – 8:35 = 30) เคธे 30 เคฎिเคจเคŸ เคชเคนเคฒे เคชเคนुँเคšे เคฅे।

เคธूเค•्เคท्เคฎ เคตिเคงि

8:35 + 30 – 8:35 ⇒ 30 เคฎिเคจเคŸ เคฏा

45 – 15 ⇒ 30 เคฎिเคจเคŸ

เคธाเคงिเคค เค‰เคฆाเคนเคฐเคฃ (Solved Examples)

1. เค‡เคธ เคตเคฐ्เคท เคฌाเคฒू เค•ा เคœเคจ्เคฎเคฆिเคจ 27 เคœเคจเคตเคฐी เค…เคฐ्เคฅाเคค् เคฌुเคงเคตाเคฐ เค•ो เคชเฅœเคคा เคนै। เคฌाเคฒू เค•ो เคฏाเคฆ เคนै เค•ि เคฎोเคนเคจ เค•ा เคœเคจ्เคฎเคฆिเคจ เค‰เคธเค•े เคœเคจ्เคฎเคฆिเคจ เค•े เคฌाเคฆ เค ीเค• เคชांเคšเคตे เคถुเค•्เคฐเคตाเคฐ เค•ो เคชเฅœเคคा เคนै। เคฎोเคนเคจ เคฌाเคฒू เคธे เค•िเคคเคจा เค›ोเคŸा เคนै?

  1. เค†ंเค•เคกे เค…เคงूเคฐे เคนैं
  2. 30 เคฆिเคจ
  3. 31 เคฆिเคจ
  4. 29 เคฆिเคจ

เคนเคฒ (2): เคฌुเคงเคตाเคฐ เค•े เคฆो เคฆिเคจ เคฌाเคฆ เคชเคนเคฒा เคถुเค•्เคฐเคตाเคฐ เคนोเค—ा। เคฆिเคจों เค•ी เค•ुเคฒ เคธंเค–्เคฏा

= 2 + (7 × 4) = 30 เคฆिเคจ

2. เคถैเคฒेเคถ เคจे เคธोเคฎเคตाเคฐ เค•ो เคซिเคฒ्เคฎ เคฆेเค–ी। เคจिเคคिเคจ เคจे เคตिเค•ाเคธ เคธे เคฆो เคฆिเคจ เคชเคนเคฒे เค•िंเคคु เคถैเคฒेเคถ เคธे เคคीเคจ เคฆिเคจ เคฌाเคฆ เคซिเคฒ्เคฎ เคฆेเค–ी। เคตिเค•ाเคธ เคจे เค•िเคธ เคฆिเคจ เคซिเคฒ्เคฎ เคฆेเค–ी?

  1. เคธोเคฎเคตाเคฐ
  2. เคถเคจिเคตाเคฐ
  3. เคฎंเค—เคฒเคตाเคฐ
  4. เคฐเคตिเคตाเคฐ

เคนเคฒ (2): เคจिเคคिเคจ เคจे เคธोเคฎเคตाเคฐ + 3 = เคฌृเคนเคธ्เคชเคคिเคตाเคฐ เค•ो เคซिเคฒ्เคฎ เคฆेเค–ी।

เคตिเค•ाเคธ เคจे เคฌृเคนเคธ्เคชเคคिเคตाเคฐ + 2 = เคถเคจिเคตाเคฐ เค•ो เคซिเคฒ्เคฎ เคฆेเค–ी।

Thursday, November 9, 2023

Clock And Calendar Test -

Clock And Calendar Test - Short-cut Tricks And Examples

The clock has 12 hours numbered from 1 to 12. Also, the clock is divided into 60 equal minute divisions. Therefore, each hour number is separated by five minute divisions.

If a watch or a clock indicates 8.15, when the correct time is 8, it is said to be 15 minutes too fast. On the other hand, if it indicates 7.45, when the correct time is 8, it is said to be 15 minutes too slow.

Minute Spaces

The face or dial of watch is a circle whose circumference is divided into 60 equal parts, called minute spaces.

Hour Hand and Minute Hand

A clock has two hands, the smaller one is called the hour hand or short hand while the larger one is called minute hand or long hand.

Relative position of the hands

The position of the M.H. relative to the H.H. is said to be the same, whenever the M.H. is separated from the H.H. by the same number of minute divisions and is on same side (clockwise or anticlockwise) of the H.H. Any relative position of the hands of a clock is repeated 11 times in every 12 hours.

  1. When both hands are 15 minute spaces apart, they are at right angle.
  2. When they are 30 minute spaces apart, they point in opposite directions.
  3. The hands are in the same straight line when they are coincident or opposite to each other.

Incorrect Clock

If a clock indicates 6 : 10, when the correct time is 6 : 00, it is said to be 10 minute to fast and if it indicates 5 : 50 when the correct time is 6 : 00, it is said to be 10 minute slow.

If both hands coincide at an interval x minutes and  then total time gainedand clock is said to be ‘fast’.

If both hands coincide at an interval x minutes and then total time lost and clock is said to be ‘slow’.

Points to Remember

One minute division == 6° apart. i.e. In one minute, the minute hand moves 6°.

One hour division = 6° × 5 = 30° apart. i.e. In one hour, the hour hand moves 30° apart.

Also, in one minute, the hour hand moves = = apart.

Since, in one minute, minute hand moves 6° and hour hand moves , therefore, in one minute, the minute hand gains  more than hour hand.

In one hour, the minute hand gains over the hour hand. i.e. the minute hand gains 55 minutes divisions over the hour hand.

In every hour, both the hand coincide once.

In a day, the hands are coinciding 22 times.

In every 12 hours, the hands of clock coincide 11 times.

In every 12 hours, the hands of clock are in opposite direction 11 times.

In every 12 hours, the hands of clock are at right angles 22 times.

In every hour, the two hands are at right angles 2 times.

In every hour, the two hands are in opposite direction once.

In a day, the two hands are at right angles 44 times.

If both the hands coincide, then they will again coincide afterminutes. i.e. in correct clock, both hand coincide at an interval of  minutes.

If the two hands coincide in time less than  minutes, then clock is too fast and if the two hands coincides in time more than  minutes, then the clock is too slow.

Solved Examples

Question 1. Find the angle between the minute hand and hour hand of a clock when the time is 7.20

Solution: Angle traced by hour hand in 12 hours = 360 Degrees

Angle traced by it in 7 hrs 20 min i.e 22/3 hrs

= (360/12) × (22/3)= 2200

Angle traced by minute hand in 60 min = 3600

Angle traced by it in 20 minutes = (360/60) × 20 = 1200

Required angle = (2200 – 1200) = 1000

Question 2. At what time between 2 and 3 o’ clock will the hands of a clock together ?

Solution: At 2 o’ clock, the hour hand is at 2 and minute hand at 12, i.e., they are 10 minute spaces apart.

To be together , the minute hand must gain 10 minutes over the hour hand.

Now, 55 minutes are gaines by it in 60 minutes

10 minutes will be gained in {(60/55) × 10} min =10 10/11 min

The hands will coincide at 10 10/11 min past 2

Question 3. At what time between 4 and 5 o’ clock will the hands of a clock be at right angle ?

Solution: At 4 o’ clock, the minute hand will be 20 min spaces behind the hour hand.

Now , when the two hands are at right angles, they are 15 min. spaces apart.

So, they are at right angles in following two cases

Case I: When minute hand is 15 minute spaces behind the hour hand

In this case min hand will have to gain (20 –15) = 5 minute spaces

55 min. spaces will be gained by it in (60 × 5)/55 min = 5 5/11 min

They are at right angles at 5 5/1 min past 4

Case II: When the minute hand is 15 minute spaces ahead of the hour hand

They are at right angles at 38 2/11 min past 4

Question 4. At what time between 4 and 5 will the hands of a watch

(i) coincide, and (ii) point in opposite directions.

Solution:

(i) At 4 O’ clock, the hands are 20 minutes apart. Clearly the minute hand must gain 20 minutes before two hands can be coincident.

But the minute-hand gains 55 minutes in 60 minutes.

Let minute hand will gain x minute in 20 minutes.

So, 

⇒  min.

∴ The hands will be together at  min past 4.

(ii) Hands will be opposite to each other when there is a space of 30 minutes between them. This will happen when the minute hand gains (20 + 30) = 50 minutes.

Now, the minute hand gains 50 min in  or  min.

∴  The hands are opposite to each other at  min past 4.

Question 5. What is the angle between the hour hand and minute hand when it was 5 : 05 pm.

Solution: 5.05 pm means hour hand was on 5 and minute hand was on 1, i.e. there will be 20 minutes gap.

∴  Angle = 20 × 6° = 120° [1 minute = 6°]

Question 6. My watch, which gains uniformly, is 2 min slow at noon on Sunday, and is 4 minutes 48 seconds fast at 2 pm on the following Sunday. When was it correct ?

Solution: From Sunday noon to the following Sunday at 2 pm

= 7 days 2 hours = 170 hours.

The watch gains minutes in 170 hours.

∴  The watch gains 2 minutes in 

Now, 50 hours = 2 days 2 hours.

2 days 2 hours from Sunday noon = 2 pm on Tuesday.

Question 7. The minute hand of a clock overtakes the hour hand at intervals of 65 minutes of the correct time. How much a day does the clock gain or lose?

Solution: In a correct clock, the minute hand gains 55 min. spaces over the hour hand in 60 minutes.

To be together again, the minute hand must gain 60 minutes over the hour hand.

55 min. are gained in 

But, they are together after 65 min.

∴  Gain in 65 min. 

Gain in 24 hours calendar-clock-s-9159.png

∴  The clock gains calendar-clock-s-9165.png minutes in 24 hours.

Question 8. A man who went out between 5 or 6 and returned between 6 and 7 found that the hands of the watch had exactly changed place. When did he go out?

Solution: Between 5 and 6 to 6 and 7, hands will change place after crossing each other one time. i.e., they together will make 1 + 1 = 2 complete revolutions.

H.H. will move through

calendar-clock-s-9172.png or calendar-clock-s-9178.png minute divisions.

Between 5 and 6 → calendar-clock-s-9184.pngminute divisions.

At 5, minute hand is 25 minute divisions behind the hour-hand.

Hence it will have to gain calendar-clock-s-9190.png minute divisions on the hour-hand

calendar-clock-s-9196.png minute divisions on the hour hand.

The minute hand gains calendar-clock-s-9205.pngminute divisions

calendar-clock-s-9213.png minutes calendar-clock-s-9219.png minutes

∴ The required time of departure is calendar-clock-s-9225.pngmin past 5.

Calendar

The Julian calendar is a reform of the Roman calendar introduced by Julius Caesar in 46 BC (708 AUC). It took effect the following year, 45 BC (709 AUC), and continued to be used as the civil calendar in some countries into the 20th century. The calendar has a regular year of 365 days divided into 12 months, as listed in Table of months. A leap day is added to February every four years. The Julian year is, therefore, on average 365.25 days long.

The calendar year was intended to approximate the tropical (solar) year. Although Greek astronomers had known, at least since Hipparchus, that the tropical year was a few minutes shorter than 365.25 days, the calendar did not compensate for this difference. As a result, the calendar year gained about three days every four centuries compared to observed equinox times and the seasons. This discrepancy was corrected by the Gregorian reform, introduced in 1582.

The Julian calendar has been replaced by the Gregorian calendar in all countries which formerly used it as the civil calendar. Most Christian denominations have also replaced it with the Gregorian calendar as the basis for their liturgical calendars.

Points to Remember

Odd Days
We are supposed to find the day of the week on a given date. For this, we use the concept of ‘odd days’.In a given period, the number of days more than the complete weeks are called odd days.
Leap Year

  • Every year divisible by 4 is a leap year, if it is not a century.
  • Every 4th century is a leap year and no other century is a leap year.

Note: A leap year has 366 days.

Examples:

  • Each of the years 1948, 2004, 1676 etc. is a leap year.
  • Each of the years 400, 800, 1200, 1600, 2000 etc. is a leap year.
  • None of the years 2001, 2002, 2003, 2005, 1800, 2100 is a leap year.

Ordinary Year

The year which is not a leap year is called an ordinary years. An ordinary year has 365 days.

Counting of Odd Days

  • 1 ordinary year = 365 days = (52 weeks + 1 day.)
  • 1 ordinary year has 1 odd day.
  • 1 leap year = 366 days = (52 weeks + 2 days)
  • 1 leap year has 2 odd days.
  • 100 years = 76 ordinary years + 24 leap years = (76 × 1 + 24 × 2) odd days = 124 odd days. = (17 weeks + 5 days) = 5 odd days.
  • Number of odd days in 100 years = 5.
  • Number of odd days in 200 years = (5 × 2)→ 3 odd days.
  • Number of odd days in 300 years = (5 × 3) → 1 odd day.
  • Number of odd days in 400 years = (5 × 4 + 1)→ 0 odd day.
  • Similarly, each one of 800 years, 1200 years, 1600 years, 2000 years etc. has 0 odd days.

Day of the Week Related to Odd Days:

No. of days:0123456
Day:Sun.Mon.Tues.Wed.Thurs.Fri.Sat.

Solved Examples

Question 1. What day of the week was 15th August 1949?

Solution: 15th August 1949 means

1948 complete years + first 7 months of the year 1949 + 15 days of August.

1600 years give no odd days.

300 years give 1 odd day.

48 years give {48 + 12} = 60 = 4 odd days.

[For ordinary years → 48 odd days and for leap year 1 more day (48 ÷ 4) = 12 odd days;

60 = 7 × 8 + 4]

From 1st January to 15th August 1949

Odd days : January – 3; February – 0; March – 3; April – 2; May – 3; June – 2; July – 3; August – 1

17 ⇒ 3 odd days.

∴ 15th August 1949 → 1 + 4 + 3 = 8 = 1 odd day.

This means that 15th Aug. fell on 1st day.

Therefore, the required day was Monday.

Question 2. How many times does the 29th day of the month occur in 400 consecutive years?

Solution: In 400 consecutive years, there are 97 leap years.

Hence, in 400 consecutive years, February has the 29th day 97 times and the remaining eleven months have the 29th day
400 × 11 = 4400 times

∴ The 29th day of the month occurs

(4400 + 97) or 4497 times.

Question 3. Today is 5th February. The day of the week is Tuesday. This is a leap year. What will be the day of the week on this date after 5 years?

Solution: This is a leap year. So, next 3 years will give one odd day each. then leap year gives 2 odd days and then again next year give 1 odd day.

Therefore (3 + 2 + 1) = 6 odd days will be there.

Hence the day of the week will be 6 odd days beyond Tuesday, i.e., it will be Monday.

Question 4. What day of the week was 20th June 1837?

Solution: 20th June 1837 means 1836 complete years

+ first 5 months of the year 1837 + 20 days of June.

1600 years give no odd days.

200 years give 3 odd days.

36 years give (36 + 9) or 3 odd days.

1836 years give 6 odd days.

From 1st January to 20th June there are 3 odd days.

Odd days : January — 3; February — 0; March — 3; April — 2; May — 3; June — 6

Total odd days =17 ⇒ 3 odd days.

Therefore, the total number of odd days = (6 + 3) or 2 odd days.

This means that the 20th of June fell on the 2nd day commencing from Monday.

Therefore, the required day was Tuesday.

Question 5. Prove that the calender for 1990 will same for 2001 also.

Solution: It is clear that the calender for 1990 will same for 2001 if first January of both the years is the same weekdays. For that the number of odd days between 31st December 1989 and 31st December 2000 must be zero. Odd days are as given below:

Year199019911992199319941995
Odd days11(L) 2111
Year19961997199819992000 
Odd days(L) 2111(L) 2 

Total number of odd days = 14 ⇒ 0 odd days.

 

 

Wednesday, October 18, 2023

Rankings and Time Sequence

Ranking And Time Sequence - Short-cut Tricks And Examples

Dear Reader, below are five simple types of ‘ranking and time sequence’ problems. You will find detailed solutions with each of the problems

As far as ranking problems are concerned, you have to remember one simple formula.

Total number of people = Rank of a person from START + Rank of person from the END – 1

Let we start with our tutorial. At the end of the tutorial, you will find a short practice test. Please do take the test so that you can be double sure that you have understood well.

Type I: Finding Rank From the Start (or the End)

In type 1, you will know the rank of a person from either the start (or the end). Using that data, you have to find the rank of that person from the end (or the start). Below example will help you.

Example Question 1: Reena is 10 ranks ahead of Priya in a class of 40. If Priya`s rank is 20th from the last, what is Reena`s rank from the start?
Answer: 31th

Solution:
Priya’s rank from the last is 20. Reena is 10 ranks ahead. Therefore, Reena’s rank from the last = Rank of Reena from the last = 20 – 10 = 10th
Now you have to apply the formula that you saw in the introduction.
Total number of students = Rank of Reena from the start + Rank of Reena from the end – 1
40 = Rank of Reena from the start + 10 – 1
Rank of Reena from the start = (40 – 10) +1
= 31th

Type II: Finding Total Number of People in a Sequence

In type 2, you will find ranks of a person from the start and the end. You have to find the total number of people. Let us see an example.

Example Question 2: Venkatesh ranks 8th from the top and 24th from the bottom in the class. How many students are there in total?
Answer: 31

Solution:
Total number of Students = Rank of Venkatesh from the top + Rank of Venkatesh from the bottom – 1
= [8 + 24] – 1= 31

Type III: Interchanging Positions

In this type, positions of the people in a sequence will be interchanged. You have to solve these problems after processing the data given.

Example Question 3: In a row of girls, Uma is 10th from the left and Meena is 20th from the right. If they interchange their positions, Uma becomes 15th from the left. How many girls are there in the row?
Answer: 34

Solution:
After interchange, rank of Uma from the left = 15
But, before interchange, Meena was 20th from the right. After interchange, Uma would have occupied the same position of Meena’s earlier spot. Therefore,
Present rank of Uma from the right = 20
Now you know the current ranks of Uma from left as well as right. Therefore,
Total number of girls = Uma’s rank from the left + Uma’s rank from the right – 1
= (15+20)-1
=34.

Type IV: Intervention in a Frequent Event

Though the heading of this type looks complicated, this is one of the easiest. There will be intervention at certain time of a frequent event. Based on that time data you have to solve the problem logically.

Let us see an example.

Example Question 4: A bus leaves to Chennai from Bangalore every 30 minutes. A passenger inquired about the next bus to Bangalore, and he was informed that the bus left 15 minutes before, and the next bus will be at 5.00 pm. Find at what time the passenger had enquired?
Answer: 4.45 pm

Solution:
For every 30 minutes, there is a bus. The next bus will be at 5.00 pm, so the last bus must have left at 4.30 pm.
The informer said that the bus had left 15 minutes before his inquiry. So the time of inquiry is 4.30 + 0.15 = 4.45 pm.

Type V: Day of Week Based on Frequency

This type is very easy just like the previous one. You can answer this with little effort. (You may not expect questions simple in your exam. However, this will be a first step in understanding more difficult questions.)

Example Question 5: Gita went to the temple five days ago. If she goes to the temple every Friday, then what day of the week is today?
Answer: Wednesday

Solution:
She went to temple five days ago i.e., Friday.
Five days from Friday is Wednesday.

Thursday, September 21, 2023

Venn Diagram Test

Venn Diagram Test - Short-cut Tricks And Examples

Type 1: Matching the Relationship

You will find a set of things in the question. You have to find the best diagram that fits the connection between the things. Below is an example to help you.

Example Question 1: Which of the following diagram indicates the best relation between Pen, Nib and Pencil?


Answer: a
Reason:
The relation between pen, nib and pencil.
Nib is a component or part of pen and pencil is different from both.
Among the options, option a represents one circle inside the other i.e. nib is the part of pen and another circle individually which represent pencil that does not have relation with other two.

Type 2: Numbers (Data) Inside Diagram

In this type, you will find numbers (data) in Venn diagrams. You have to find the answers based on the data.

Below is an example question.

Example Question 2: In the below diagram, rectangle represents Dancer, triangle represents Singer and circle represents Dramatist.


1. How many dancers are also singers?
a) 7 b) 5 c) 8 d) 2
Answer: c) 8
Reason:
Rectangle represents dancers. Triangle represents singers. To find the dancers who are also singers, see the overlap area between rectangle and triangle.
The overlap contains 6 and 2. Therefore, the answer is 6+2 = 8.

2. How many dramatist are both dancers and singers?
a) 6 b) 5 c) 8 d) 2
Answer: a) 6

3. how many singers are neither dancers nor dramatist?
a) 6 b) 4 c) 8 d) 2
Answer: a) 8
Reason:
You have to find the area that represents only singers and neither dancer nor dramatists. Therefore, you observe the part in triangle that is not a part of rectangle or circle.
The part of triangle separate from rectangle and circle contains 8.
Therefore, 8 is the answer.

 

 

Recently Added

Video Lectures

 

Available Educational Materials