Showing posts with label 2 Chemistry 11. Show all posts
Showing posts with label 2 Chemistry 11. Show all posts

Sunday, June 18, 2023

परमाणु की सरंचना एक संक्षिप्त जानकारी

परमाणु की सरंचना एक संक्षिप्त जानकारी 

परमाणु तत्त्वों के रचनात्मक भाग होते हैं। ये तत्त्व के एेसे छोटे भाग हैं, जो रासायनिक क्रिया में भाग लेते हैं। प्रथम परमाणु सिद्धांत, जिसे जॉन डॉल्टन ने सन् 1808 में प्रतिपादित किया, के अनुसार परमाणु पदार्थ के एेसे सबसे छोटे कण होते हैं, जिन्हें और विभाजित नहीं किया जा सकता है। उन्नीसवीं शताब्दी के अंत में प्रयोगों द्वारा यह प्रमाणित हो गया कि परमाणु विभाज्य है तथा वह तीन मूल कणों (इलेक्ट्रॉन, प्रोटॉन तथा न्यूट्रॉन) द्वारा बना होता है। इन अव-परमाणविक कणों की खोज के बाद परमाणु की संरचना को स्पष्ट करने के लिए बहुत से परमाणु मॉडल प्रस्तुत किए गए।
सन् 1898 में थॉमसन ने कहा कि परमाणु एक समान धनात्मक विद्युत् आवेश वाला एक गोला होता है, जिस पर इलेक्ट्रॉन उपस्थित होते हैं। वह मॉडल, जिसमें परमाणु का द्रव्यमान पूरे परमाणु पर एक समान वितरित माना गया था, सन् 1909 में रदरफोर्ड के महत्त्वपूर्ण α-कण के प्रकीर्णन प्रयोग द्वारा गलत सिद्ध हुआ। रदरफोर्ड ने यह निष्कर्ष निकाला कि परमाणु के केंद्र में बहुत छोटे आकार का धनावेशित नाभिक होता है और इलेक्ट्रॉन इसके चारों ओर वृत्ताकार कक्षों में गति करते हैं। रदरफोर्ड मॉडल, जो सौरमंडल से मिलता-जुलता था, निश्चित रूप से डाल्टन मॉडल से बेहतर था, परंतु यह परमाणु की स्थिरता की, अर्थात् यह इस बात की व्याख्या नहीं कर पाया कि इलेक्ट्रॉन नाभिक में क्यों नहीं गिर जाते हैं? इसके अलावा यह परमाणु की इलेक्ट्रॉनिक संरचना, अर्थात् नाभिक के चारों ओर इलेक्ट्रॉनों के वितरण और उनकी ऊर्जा के बारे में कुछ नहीं बता सका। रदरफोर्ड मॉडल की इन कठिनाइयों को सन् 1913 में नील बोर ने हाइड्रोजन परमाणु के अपने मॉडल में दूर किया तथा यह प्रस्तावित किया कि नाभिक के चारों ओर वृत्ताकार कक्षों में इलेक्ट्रॉन गति करता है। केवल कुछ कक्षों का ही अस्तित्व हो सकता है तथा प्रत्येक कक्षा की निश्चित ऊर्जा होती है। बोर ने विभिन्न कक्षों में इलेक्ट्रॉन की ऊर्जा की गणना की और प्रत्येक कक्षा के लिए नाभिक और इलेक्ट्रॉन की दूरी का आकलन किया। हालाँकि बोर मॉडल हाइड्रोजन के स्पेक्ट्रम को संतोषपूर्वक स्पष्ट करता था, लेकिन यह बहु-इलेक्ट्रॉन परमाणुओं के स्पेक्ट्रमों की व्याख्या नहीं कर पाया। इसका कारण बहुत जल्द ही ज्ञात हो गया। बोर मॉडल में इलेक्ट्रॉन को नाभिक के चारों ओर एक निश्चित वृत्ताकार कक्षा में गति करते हुए आवेशित कण के रूप में माना गया था। इसमें उसके तरंग जैसे लक्षणों के बारे में नहीं सोचा गया था। एक कक्षा एक निश्चित पथ होता है और इस पथ को पूरी तरह तभी परिभाषित माना जा सकता है, जब एक ही समय पर इलेक्ट्रॉन की सही स्थिति और सही वेग ज्ञात हो। हाइज़ेनबर्ग  के ‘अनिश्चितता सिद्धांत’ के अनुसार एेसा संभव नहीं है। इस प्रकार हाइड्रोजन परमाणु का बोर मॉडल न केवल इलेक्ट्रॉन के दोहरे व्यवहार की उपेक्षा करता है, बल्कि हाइज़ेनबर्ग अनिश्चितता सिद्धांत का भी विरोध करता है।
सन् 1926 में इरविन श्रोडिंजर ने एक समीकरण दिया, जिसे ‘श्रोडिंजर समीकरण’ कहा जाता है। इसके द्वारा त्रिविम में इलेक्ट्रॉन के वितरण और परमाणुओं में अनुमत ऊर्जा स्तरों का वर्णन किया जा सकता है। यह समीकरण न केवल दे ब्रॉग्ली के तरंग-कण वाले दोहरे लक्षण की संकल्पना को ध्यान में रखता है, बल्कि हाइज़ेनबर्ग के ‘अनिश्चितता सिद्धांत’ के भी संगत है। जब इस समीकरण को हाइड्रोजन परमाणु में इलेक्ट्रॉन के लिए हल किया गया, तो इलेक्ट्रॉन के संभव ऊर्जा-स्तरों और संगत तरंग फलनों (जो गणितीय फलन होते हैं) के बारे में जानकारी प्राप्त हुई। ये क्वांटित ऊर्जा-स्तर और उनके संगत तरंग-फलन जो तीन क्वांटम संख्याओं– मुख्य क्वांटम संख्या n, दिगंशीय क्वांटम संख्या l, और चुंबकीय क्वांटम संख्या ml के द्वारा पहचाने जाते हैं, श्रोडिंजर समीकरण के हल के परिणामस्वरूप प्राप्त होते हैं। इन तीन क्वांटम संख्याओं के मानों पर प्रतिबंध भी श्रोडिंजर-समीकरण के हल से स्वतः प्राप्त होते हैं। हाइड्रोजन परमाणु का क्वांटम यांत्रिकीय मॉडल उसके स्पेक्ट्रम के सभी पहलुओं की व्याख्या करता है और उसके अतिरिक्त कुछ एेसी परिघटनाओं को भी समझाता है, जो बोर मॉडल द्वारा स्पष्ट नहीं हो सकीं।
परमाणु के क्वांटम यांत्रिकीय मॉडल के अनुसार बहु-इलेक्ट्रॉन परमाणुओं के इलेक्ट्रॉन-वितरण को कई कोशों में बाँटा गया है। ये कोश एक या अधिक उप-कोशों के बने हुए हो सकते हैं तथा इन उप-कोशों में एक या अधिक कक्षक हो सकते हैं, जिनमें इलेक्ट्रॉन उपस्थित होता है। हाइड्रोजन और हाइड्रोजन जैसे निकायों (उदाहरणार्थ– He+, Li2+ आदि) में किसी दिए गए कोश के सभी कक्षकों की समान ऊर्जा होती है, परंतु बहु-इलेक्ट्रॉन परमाणुओं में कक्षकों की ऊर्जा n और l के मानों पर निर्भर है। किसी कक्षक के लिए (n + l) का मान जितना कम होगा उसकी ऊर्जा भी उतनी ही कम होगी। यदि कोई दो कक्षकों का (n + l) मान समान है, तो उस कक्षक की ऊर्जा कम होगी, जिसके लिए n का मान कम है। किसी परमाणु में एेसे कई कक्षक संभव होते हैं, तथा उनमें ऊर्जा के बढ़ते क्रम में इलेक्ट्रॉन पाउली के अपवर्जन सिद्धांत (किसी परमाणु में किन्हीं दो इलेक्ट्रॉनों की चारों क्वांटम-संख्या का मान समान नहीं हो सकता है) और हुंड के अधिकतम बहुकता नियम (एक उपकोश के कक्षकों में इलेक्ट्रॉनों का युग्मन तब तक प्रारंभ नहीं होता, जब तक प्रत्येक कक्षक में एक-एक इलेक्ट्रॉन न आ आए) के आधार पर भरे जाते हैं। परमाणुओं की इलेक्ट्रॉनिक संरचना इन्हीं विचारों पर आधारित है।

Saturday, June 17, 2023

A Concise Details About Structure of Atom

A Concise Details About Structure of Atom

Atoms are the building blocks of elements. They are the smallest parts of an element that chemically react. The first atomic theory, proposed by John Dalton in 1808, regarded atom as the ultimate indivisible particle of matter. Towards the end of the nineteenth century, it was proved experimentally that atoms are divisible and consist of three fundamental particles: electrons, protons and neutrons. The discovery of sub-atomic particles led to the proposal of various atomic models to explain the structure of atom.
Thomson in 1898 proposed that an atom consists of uniform sphere of positive electricity with electrons embedded into it. This model in which mass of the atom is considered to be evenly spread over the atom was proved wrong by Rutherford’s famous alpha-particle scattering experiment in 1909. Rutherford concluded that atom is made of a tiny positively charged nucleus, at its centre with electrons revolving around it in circular orbits. Rutherford model, which resembles the solar system, was no doubt an improvement over Thomson model but it could not account for the stability of the atom i.e., why the electron does not fall into the nucleus. Further, it was also silent about the electronic structure of atoms i.e., about the distribution and relative energies of electrons around the nucleus. The difficulties of the Rutherford model were overcome by Niels Bohr in 1913 in his model of the hydrogen atom. Bohr postulated that electron moves around the nucleus in circular orbits. Only certain orbits can exist and each orbit corresponds to a specific energy. Bohr calculated the energy of electron in various orbits and for each orbit predicted the distance between the electron and nucleus. Bohr model, though offering a satisfactory model for explaining the spectra of the hydrogen atom, could not explain the spectra of multi-electron atoms. The reason for this was soon discovered. In Bohr model, an electron is regarded as a charged particle moving in a well defined circular orbit about the nucleus. The wave character of the electron is ignored in Bohr’s theory. An orbit is a clearly defined path and this path can completely be defined only if both the exact position and the exact velocity of the electron at the same time are known. This is not possible according to the Heisenberg uncertainty principle. Bohr model of the hydrogen atom, therefore, not only ignores the dual behaviour of electron but also contradicts Heisenberg uncertainty principle. 
Erwin Schrödinger, in 1926, proposed an equation called Schrödinger equation to describe the electron distributions in space and the allowed energy levels in atoms. This equation incorporates de Broglie’s concept of wave-particle duality and is consistent with Heisenberg uncertainty principle. When Schrödinger equation is solved for the electron in a hydrogen atom, the solution gives the possible energy states the electron can occupy [and the corresponding wave function(s) (ψ) (which in fact are the mathematical functions) of the electron associated with each energy state]. These quantized energy states and corresponding wave functions which are characterized by a set of three quantum numbers (principal quantum number n, azimuthal quantum number l and magnetic quantum number ml) arise as a natural consequence in the solution of the Schrödinger equation. The restrictions on the values of these three quantum numbers also come naturally from this solution. The quantum mechanical model of the hydrogen atom successfully predicts all aspects of the hydrogen atom spectrum including some phenomena that could not be explained by the Bohr model.
According to the quantum mechanical model of the atom, the electron distribution of an atom containing a number of electrons is divided into shells. The shells, in turn, are thought to consist of one or more subshells and subshells are assumed to be composed of one or more orbitals, which the electrons occupy. While for hydrogen and hydrogen like systems (such as He+, Li2+ etc.) all the orbitals within a given shell have same energy, the energy of the orbitals in a multi-electron atom depends upon the values of n and l: The lower the value of (n + l ) for an orbital, the lower is its energy. If two orbitals have the same (n + l ) value, the orbital with lower value of n has the lower energy. In an atom many such orbitals are possible and electrons are filled in those orbitals in order of increasing energy in accordance with Pauli exclusion principle (no two electrons in an atom can have the same set of four quantum numbers) and Hund’s rule of maximum multiplicity (pairing of electrons in the orbitals belonging to the same subshell does not take place until each orbital belonging to that subshell has got one electron each, i.e., is singly occupied). This forms the basis of the electronic structure of atoms.

Recently Added

Straight Line

  Slope of a Line A line in a coordinate plane forms two angles with the x-axis, which are supplementary.   The angle (say) θ made by the li...

Available Educational Materials