Wednesday, October 18, 2023

Rankings and Time Sequence

Ranking And Time Sequence - Short-cut Tricks And Examples

Dear Reader, below are five simple types of ‘ranking and time sequence’ problems. You will find detailed solutions with each of the problems

As far as ranking problems are concerned, you have to remember one simple formula.

Total number of people = Rank of a person from START + Rank of person from the END – 1

Let we start with our tutorial. At the end of the tutorial, you will find a short practice test. Please do take the test so that you can be double sure that you have understood well.

Type I: Finding Rank From the Start (or the End)

In type 1, you will know the rank of a person from either the start (or the end). Using that data, you have to find the rank of that person from the end (or the start). Below example will help you.

Example Question 1: Reena is 10 ranks ahead of Priya in a class of 40. If Priya`s rank is 20th from the last, what is Reena`s rank from the start?
Answer: 31th

Solution:
Priya’s rank from the last is 20. Reena is 10 ranks ahead. Therefore, Reena’s rank from the last = Rank of Reena from the last = 20 – 10 = 10th
Now you have to apply the formula that you saw in the introduction.
Total number of students = Rank of Reena from the start + Rank of Reena from the end – 1
40 = Rank of Reena from the start + 10 – 1
Rank of Reena from the start = (40 – 10) +1
= 31th

Type II: Finding Total Number of People in a Sequence

In type 2, you will find ranks of a person from the start and the end. You have to find the total number of people. Let us see an example.

Example Question 2: Venkatesh ranks 8th from the top and 24th from the bottom in the class. How many students are there in total?
Answer: 31

Solution:
Total number of Students = Rank of Venkatesh from the top + Rank of Venkatesh from the bottom – 1
= [8 + 24] – 1= 31

Type III: Interchanging Positions

In this type, positions of the people in a sequence will be interchanged. You have to solve these problems after processing the data given.

Example Question 3: In a row of girls, Uma is 10th from the left and Meena is 20th from the right. If they interchange their positions, Uma becomes 15th from the left. How many girls are there in the row?
Answer: 34

Solution:
After interchange, rank of Uma from the left = 15
But, before interchange, Meena was 20th from the right. After interchange, Uma would have occupied the same position of Meena’s earlier spot. Therefore,
Present rank of Uma from the right = 20
Now you know the current ranks of Uma from left as well as right. Therefore,
Total number of girls = Uma’s rank from the left + Uma’s rank from the right – 1
= (15+20)-1
=34.

Type IV: Intervention in a Frequent Event

Though the heading of this type looks complicated, this is one of the easiest. There will be intervention at certain time of a frequent event. Based on that time data you have to solve the problem logically.

Let us see an example.

Example Question 4: A bus leaves to Chennai from Bangalore every 30 minutes. A passenger inquired about the next bus to Bangalore, and he was informed that the bus left 15 minutes before, and the next bus will be at 5.00 pm. Find at what time the passenger had enquired?
Answer: 4.45 pm

Solution:
For every 30 minutes, there is a bus. The next bus will be at 5.00 pm, so the last bus must have left at 4.30 pm.
The informer said that the bus had left 15 minutes before his inquiry. So the time of inquiry is 4.30 + 0.15 = 4.45 pm.

Type V: Day of Week Based on Frequency

This type is very easy just like the previous one. You can answer this with little effort. (You may not expect questions simple in your exam. However, this will be a first step in understanding more difficult questions.)

Example Question 5: Gita went to the temple five days ago. If she goes to the temple every Friday, then what day of the week is today?
Answer: Wednesday

Solution:
She went to temple five days ago i.e., Friday.
Five days from Friday is Wednesday.

Thursday, September 21, 2023

Venn Diagram Test

Venn Diagram Test - Short-cut Tricks And Examples

Type 1: Matching the Relationship

You will find a set of things in the question. You have to find the best diagram that fits the connection between the things. Below is an example to help you.

Example Question 1: Which of the following diagram indicates the best relation between Pen, Nib and Pencil?


Answer: a
Reason:
The relation between pen, nib and pencil.
Nib is a component or part of pen and pencil is different from both.
Among the options, option a represents one circle inside the other i.e. nib is the part of pen and another circle individually which represent pencil that does not have relation with other two.

Type 2: Numbers (Data) Inside Diagram

In this type, you will find numbers (data) in Venn diagrams. You have to find the answers based on the data.

Below is an example question.

Example Question 2: In the below diagram, rectangle represents Dancer, triangle represents Singer and circle represents Dramatist.


1. How many dancers are also singers?
a) 7 b) 5 c) 8 d) 2
Answer: c) 8
Reason:
Rectangle represents dancers. Triangle represents singers. To find the dancers who are also singers, see the overlap area between rectangle and triangle.
The overlap contains 6 and 2. Therefore, the answer is 6+2 = 8.

2. How many dramatist are both dancers and singers?
a) 6 b) 5 c) 8 d) 2
Answer: a) 6

3. how many singers are neither dancers nor dramatist?
a) 6 b) 4 c) 8 d) 2
Answer: a) 8
Reason:
You have to find the area that represents only singers and neither dancer nor dramatists. Therefore, you observe the part in triangle that is not a part of rectangle or circle.
The part of triangle separate from rectangle and circle contains 8.
Therefore, 8 is the answer.

 

 

Recently Added

Chemical Reactions and Equations

Available Educational Materials