Tuesday, June 18, 2019

Colligative Properties and Calculation of Molecular Mass

Chemistry Class XIIChapter Solutions

Colligative Properties and Calculation of Molecular Mass

"That property of a solution depend upon numbers of the present particles in the solution  is known as Colligative Properties."


As per Raoult's Law
"The relative lowering the vapour pressure is equal to the mole fraction of solute in the solution".

Let the vapour pressure of pure solvent and solvent in the solution are P⁰ and Ps respectively.

Lowering of vapour pressure =  P⁰ - Ps
Relative lowering of vapour pressure =  (P⁰ - Ps)/P⁰

Mole fraction of solute in the solution = n/(n + N)

Here,
n is the number of moles of the solute in the solution.
N is the number of moles of pure solvent.

According to Raulot's Law;

 (P⁰ - Ps)/P⁰ =  n/(n + N)
When n is far far less than N.

 (P⁰ - Ps)/P⁰ = n/N ...................... (i)
We know that
n = w/m = Weight of solute/ Molecular weight of solute
N = W/M = Weight of solvent/ Molecular weight of solvent

Now, from (i)

 (P⁰ - Ps)/P⁰ = wM/mW
Therefore, molecular weight of the solute

m = P⁰wM/W(P⁰ - Ps)

The above expression calculate the molecular mass of the solute.

Sunday, June 16, 2019

पाइथागोरस प्रमेय

पाइथागोरस प्रमेय

"समकोण  त्रिभुज में कर्ण का वर्ग अन्य दो भुजाओं के वर्गों के योगफल के बराबर होता है"।

दिया है ः-
ABC एक समकोण त्रिभुज है  जिसमें AC कर्ण है . AB एवं BC अन्य दो भुजाएं है।
सिद्ध करना है कि :-
(AC)² = (AB)² + (BC)²

रचना :-

AC पर BD लम्ब डाला

प्रमाण:-

समकोण त्रिभुज ABC एवं ADB में विचार करने पर
<BAC = <BAD            (उभयनिष्ठ)
<ABC = <ADB           (प्रत्येक समकोण)
<ACB = <ABD           (शेष कोण)
त्रिभुज ABC एवं ADB समरूप AAA समरूपता से
AC/AB = AB/AD
ACxAD = (AB)²  .....................  (i)

समकोण त्रिभुज ABC एवं BDC में विचार करने पर

<ACB = <BCD            (उभयनिष्ठ)
<ABC = <CDB           (प्रत्येक समकोण)
<CAB = <DBC           (शेष कोण)
त्रिभुज ABC एवं BDC समरूप AAA समरूपता से

AC/BC = BC/DC

ACxDC = (BC)²   .................... (ii)

अब (i) तथा (ii) को जोडने पर

ACxAD + ACxDC = (AB)² + (BC)²
AC(AD + DC) = (AB)² + (BC)²
चित्र से स्पष्ट है कि
AD + DC = AC
अतः  ACxAC = (AB)² + (BC)²

(AC)² = (AB)² + (BC)²

सिद्ध हो गया।

Recently Added

Chemical Reactions and Equations

Available Educational Materials