Wednesday, December 29, 2021

Some Basic Concepts of Chemistry

  1. Some Basic Concepts of Chemistry

The study of chemistry is very important as its domain encompasses every sphere of life. Chemists study the properties and structure of substances and the changes undergone by them. All substances contain matter, which can exist in three states – solid, liquid or gas. The constituent particles are held in different ways in these states of matter and they exhibit their characteristic properties. 


Classification of Matter


Matter can also be classified into elements, compounds or mixtures. An element contains particles of only one type, which may be atoms or molecules. The compounds are formed where atoms of two or more elements combine in a fixed ratio to each other. Mixtures occur widely and many of the substances present around us are mixtures.

When the properties of a substance are studied, measurement is inherent. 


Measurements of Substances in SI System


The quantification of properties requires a system of measurement and units in which the quantities are to be expressed. Many systems of measurement exist, of which the English and the Metric Systems are widely used. The scientific community, however, has agreed to have a uniform and common system throughout the world, which is abbreviated as SI units (International System of Units).

Since measurements involve recording of data, which are always associated with a certain amount of uncertainty, the proper handling of data obtained by measuring the quantities is very important. The measurements of quantities in chemistry are spread over a wide range of 10-31 to 1023. Hence, a convenient system of expressing the numbers in scientific notation is used. The uncertainty is taken care of by specifying the number of significant figures, in which the observations are reported. The dimensional analysis helps to express the measured quantities in different systems of units. Hence, it is possible to interconvert the results from one system of units to another.


Basic Laws of Chemical Combination


The combination of different atoms is governed by basic laws of chemical combination — these being the 

1. Law of Conservation of Mass, 2. Law of Definite Proportions, 3. Law of Multiple Proportions, 

4. Gay Lussac’s Law of Gaseous Volumes and 5. Avogadro Law. 

All these laws led to the Dalton’s atomic theory, which states that atoms are building blocks of matter. 


Atomic and Molecular Mass


The atomic mass of an element is expressed relative to 12C isotope of carbon, which has an exact value of 12u. Usually, the atomic mass used for an element is the average atomic mass obtained by taking into account the natural abundance of different isotopes of that element. The molecular mass of a molecule is obtained by taking sum of the atomic masses of different atoms present in a molecule. The molecular formula can be calculated by determining the mass per cent of different elements present in a compound and its molecular mass.


Avogadro Number

 

The number of atoms, molecules or any other particles present in a given system are expressed in the terms of Avogadro constant (6.022 × 1023). This is known as 1 mol of the respective particles or entities.


Stoichiometric Calculations


Chemical reactions represent the chemical changes undergone by different elements and compounds. A balanced chemical equation provides a lot of information. The coefficients indicate the molar ratios and the respective number of particles taking part in a particular reaction. The quantitative study of the reactants required or the products formed is called stoichiometry. Using stoichiometric calculations, the amount of one or more reactant(s) required to produce a particular amount of product can be determined


The Amount of Substance in a Solution


The amount of substance present in a given volume of a solution is expressed in number of ways, e.g., 1. Mass Per cent, 2. Mole fraction, 3. Molarity and 4. Molality.

Sunday, December 26, 2021

Electric Generator

Electric Generator


Uses and Working Principle


Based on the phenomenon of electromagnetic induction, the experiments studied above generate induced current, which is usually very small. This principle is also employed to produce large currents for use in homes and industry. In an electric generator, mechanical energy is used to rotate a conductor in a magnetic field to produce electricity.


General Construction of an Electric Generator


An electric generator, as shown in Fig, consists of a rotating rectangular coil ABCD placed between the two poles of a permanent magnet. The two ends of this coil are connected to the two rings R1 and R2. The inner side of these rings are made insulated. The two conducting stationary brushes B1 and B2 are kept pressed separately on the rings R1 and R2, respectively. The two rings R1 and R2 are internally attached to an axle. The axle may be mechanically rotated from outside to rotate the coil inside the magnetic field. Outer ends of the two brushes are connected to the galvanometer to show the flow of current in the given external circuit.


Working of Electric Generator


When the axle attached to the two rings is rotated such that the arm AB moves up (and the arm CD moves down) in the magnetic field produced by the permanent magnet. Let us say the coil ABCD is rotated clockwise in the arrangement shown in Fig.

Figure Illustration of the principle of electric generator

By applying Fleming’s right-hand rule, the induced currents are set up in these arms along the directions AB and CD. Thus an induced current flows in the direction ABCD. If there are larger numbers of turns in the coil, the current generated in each turn adds up to give a large current through the coil. This means that the current in the external circuit flows from B2 to B1.

After half a rotation, arm CD starts moving up and AB moving down. As a result, the directions of the induced currents in both the arms change, giving rise to the net induced current in the direction DCBA. The current in the external circuit now flows from B1 to B2. Thus after every half rotation the polarity of the current in the respective arms changes. Such a current, which changes direction after equal intervals of time, is called an alternating current (abbreviated as AC). This device is called an AC generator.

To get a direct current (DC, which does not change its direction with time), a split-ring type commutator must be used. With this arrangement, one brush is at all times in contact with the arm moving up in the field, while the other is in contact with the arm moving down. We have seen the working of a split ring commutator in the case of an electric motor (see Fig.). Thus a unidirectional current is produced. The generator is thus called a DC generator.

The difference between the direct and alternating currents is that the direct current always flows in one direction, whereas the alternating current reverses its direction periodically. Most power stations constructed these days produce AC. 


Characteristics of Produced A.C. in India


In India, the AC changes direction after every 1/100 second, that is, the frequency of AC is 50 Hz. An important advantage of AC over DC is that electric power can be transmitted over long distances without much loss of energy.

Recently Added

Straight Line

  Slope of a Line A line in a coordinate plane forms two angles with the x-axis, which are supplementary.   The angle (say) θ made by the li...

Available Educational Materials