Friday, August 11, 2023

Direction Sense

Direction Sense - Short-cut Tricks And Examples

Type I: Identify Direction (After Journey)

In this type, based on the conditions given, you have to construct a diagram. Based on your diagram, you have to identify the direction at final spot. Below example will help you to understand better.

Example Question 1: Rahul walks 5 km West, turns southeast and walks 8 km. Again, he turns towards northeast and walks 10 km and then turns to his right. In which direction from his starting point is he standing now?
a) East
b) West
c) Northeast
d) Southeast
Answer: c) Northeast

Reason:

If you apply the conditions given in the question, you will get the below diagram.

From the above diagram, you can say that Rahul is in Northeast direction from his starting point.

Type II: Identify Distance When Start & Finish Points Are in Straight Line

In this type, you will be asked to find the distance between start and finish points. The conditions will be such that the final point will be in straight line with the starting point. Below is an example for this type.

Example Question 2: Sita started from her home towards North and covered a distance of 200 m and then turned to her right and walked 150 m. Then she again turned to her right and walked 75 m and finally she again turned to her right and walked 150 m. How far is she from her home?
a) 125 m
b) 200 m
c) 175 m
d) 150 m
Answer: b) 125 m

Reason:
Based on the question, you will be able to draw the below diagram. As you can see, the starting point A is in straight line with the end point E.


As you know, the above diagram represents the total distance walked by Sita.
Now, we have to find the distance between Sita’s home and the place where she ends i.e., the distance of AE.
Here, AB = 200 m, CD = 75 m
Since CD and BE are parallel lines and BCDE is a rectangle, you can write BE = (CD =) 75 m.

Therefore, you can calculate AE as follows.
AE = AB – BE
= 200 – 75
=125 m.

Type III: Calculate Distance When Start & Finish Points Are NOT in Straight Line

This type is a slight extension of type 2. In this case, the start and finish points will not be in straight line. Below is an example.

Example Question 3: Kishore rides in his bicycle from his home 10 m towards north, then he turns right and travels 15 m, then turns left and travels 10 m and reaches his office. How far is the office from his home?
a) 100 m
b) 25 m
c) 75 m
d) 50 m
Answer: b) 25 m

Reason:

We have to find the distance between Kishore’s home and office.
From the diagram, the distance to find is AD.
From Pythagoras formula,
AD2 = AE2 + ED2 ….. equation 1

But, from the above diagram, ED = EC + CD
ED = 10 + 10 (Because EC = AB = 10 and CD = 10)
= 20

Now you have to substitute the value of ED = 20, in equation 1.
AD2 = 152 + 202
AD2 = 625
AD = 25 m

Type IV: Calculating Direction/Distance When Turns Are Given in Degrees

This type is similar to the above types with one exception. In this case, the turns will be given in degrees. Now let us see an example.

In such problems, whenever you see “clockwise”, you have to understand that the person is turning “right”. Similarly, an “anti-clockwise” turn denotes a “left” turn.

Example Question 4: Gita runs towards north 5 km and from there turned 90˚ anti-clockwise and runs 4 km. Then she takes 135˚ turn clockwise and ran 2 km. Find the direction of Gita with respect to the starting point.
a) South west Region
b) North west Region
c) South east Region
d) North east Region
Answer: d) North east Region

Reason:

You can easily draw the below diagram if you follow the question carefully.

Hence, the final direction is North East.

 

 

Thursday, August 10, 2023

सादृश्यता परीक्षा

सादृश्यता परीक्षा (Analogy Test) शार्ट ट्रिक और उदहारण

सादृश्यता का अर्थ समानता होता है। इसका उद्देश्य वस्तुओं के बीच समानता या उनमें अन्तर्निहित आन्तरिक संबंधों को समझने एवं विश्लेषण करने की योग्यता को परखना है। समान संबंधों के आधार पर समानता का परीक्षण सादृश्यता का मुख्य उद्देश्य है।

इससे संबंधित प्रश्न विभिन्न तत्वों, वस्तुओं, घटनाओं, क्रियाओं इत्यादि के अंतर्संबंधों को समझने और परखने की योग्यता की जांच के लिए होते हैं। यद्यपि ऐसे प्रश्न आसान प्रतीत होते हैं, किन्तु थोड़ी भी असावधानी पर गलत होने की सम्भावना बनी रहती है।

अतः ऐसे प्रश्नों का उत्तर देते समय पूरी सावधानी बरतनी चाहिए। शब्दों को व्यापक अर्थों में समझने का प्रयास करना चाहिए। इस परीक्षण के अन्तर्गत प्रश्न अंक, अक्षर तथा शब्द तीनों पर आधारित होते हैं। अक्षरों पर आधारित प्रश्नों को हल करने के लिए अंग्रेज़ी वर्णमाला में विभिन्न अक्षरों की स्थिति याद रखनी चाहिए।

सादृश्यता पर प्रश्न प्रत्येक प्रकार के संबंधों पर भी आधारित होते हैं जो हम सोचते हैं या जिसे हम अपने दैनिक जीवन में पाते हैं। कुछ उदाहरणों के द्वारा इस प्रकार के प्रश्नों पर गौर करें:

पूछे जाने वाले प्रश्नों पर एक दृष्टि

1. शब्द समरूपता

उदाहरण 1. जिस प्रकार ‘इंतजार’ का संबंध ‘उबन’ से है, उसी प्रकार ‘शिक्षा’ का संबंध किससे है?

  1. पुस्तक से
  2. स्कूल से
  3. पाठ्यक्रम से
  4. ज्ञान-वर्धन से

हल (4): जिस प्रकार ‘इंतजार’ करने पर ‘उबन’ होती है, उसी प्रकार ‘शिक्षा’ ग्रहण करने पर ‘ज्ञान-वर्धन’ होता है।

अतः, ? ⇒ ज्ञान-वर्धन

उदाहरण 2. दिये गए विकल्पों में से कौन प्रश्नवाचक स्थान पर आएगा?

बिम्बलडन-ट्राॅफी : टेनिस :: वाकर कप : ?

  1. गोल्फ
  2. कुश्ती
  3. बाॅक्सिंग
  4. घुड़दौड़

हल (1): ‘बिम्बलडन ट्राॅफी’, टेनिस की एक प्रतियोगिता है, उसी प्रकार ‘वाकर कप’, गोल्फ की एक प्रतियोगिता है।

अतः, ? ⇒ गोल्फ

2. अक्षर समरूपता

उदाहरण 3. दिये गए विकल्पों में से कौन प्रश्नवाचक स्थान पर आएगा?

JPLM : NTPQ :: BKLO : ?

  1. DOPS
  2. FOPS
  3. FOQR
  4. FRPS

हल (2):

3. संख्या समरूपता

उदाहरण 4. दिये गए विकल्पों में से कौन प्रश्नवाचक स्थान पर आएगा?

25 : 630 :: 10 : ?

  1. 105
  2. 47
  3. 18
  4. 27

हल (1): (25 × 25) + 5 = 630

(10 × 10) + 5 = 105.

4. अक्षर-संख्या समरूपता

उदाहरण 5. ‘8’ का ’16P’ से और ‘6’ का ’12L’ से जो संबंध है वही संबंध ’11’ का …………….. से है।

  1. 22 R
  2. 22 K
  3. 22 J
  4. इनमें से कोई नहीं

हल (4): 8 × 2 = 16 एवं

(अंग्रेज़ी वर्णमाला में P का स्थान 16वां है।)

6 × 2 = 12 एवं L

(अंग्रेजी वर्णमाला में L का स्थान 12वां है।)

अतः 11 × 2 = 22 एवं V

(अंग्रेज़ी वर्णमाला में V का स्थान 22 वां है।)

साधित उदाहरण (Solved Examples)

1. जिस प्रकार ‘b’ का संबंध ‘doubt’ से है, उसी प्रकार ‘h’ का संबंध किससे है?

  1. house
  2. honest
  3. hope
  4. inhibit

हल (2): जिस प्रकार अक्षर ‘b’ का उच्चारण ‘doubt’ शब्द में नहीं किया जाता है।, उसी प्रकार अक्षर ‘h’ का उच्चारण शब्द honest में नहीं किया जाता है।

अतः ? ⇒ honest

2. जिस प्रकार ‘प्रवेश’ का संबंध ‘निर्गम’ से है, उसी प्रकार ‘निष्ठा’ का संबंध किससे है?

  1. झूठ
  2. विश्वासघात
  3. बेईमानी
  4. सत्य

हल (2): जिस प्रकार ‘प्रवेश’ का विपरीत ‘निर्गम’ होता है, उसी प्रकार ‘निष्ठा’ का विपरीत ‘विश्वासघात’ होता है।

अतः, ? ⇒ विश्वासघात

3. निम्नलिखित में किस जोडे का संबंध ‘OFTEN : FOTNE’ के समान है?

  1. HEART : TRAHE
  2. OPENS : SNEOP
  3. RISKY : IRSYK
  4. FIRST : IFRST

हल (c):

4. दिये गए विकल्पों में से कौन प्रश्नवाचक स्थान पर आएगा?

टका : बांग्लादेश :: लीरा : ?

  1. कंबोडिगा
  2. इटली
  3. भारत
  4. पाकिस्तान

हल (2): ‘टका’, बंगलादेश की मुद्रा है, उसी प्रकार ‘लीरा’, इटली की मुद्रा है।

अतः, ? ⇒ इटली

5. निम्नलिखित में किस जोडे का संबंध ‘तमाशा : हँसी’ के समान है ?

  1. घबराहट : निराशा
  2. प्रकार : भेद
  3. व्यंग्य : क्रोध
  4. डर : बेचैनी

हल (4): तमाशा में हँसी आती है, डर से बेचैनी होती है

6. दिये गए विकल्पों में से कौन प्रश्नवाचक स्थान पर आएगा?

पायरिया : दाँत :: ट्रकोमा : ?

  1. कान
  2. त्वचा
  3. नाम
  4. आँख

हल (4): ‘पायरिया’, ‘दाँत’ की एक बीमारी है, उसी प्रकार ‘ट्रकोमा’, ‘आँख’ की एक बीमारी है।

अतः, ? ⇒ आँख

8. दिए गए विकल्पों में से एक शब्द का चयन करें जो समान समूह के अन्तर्गत आता हो:

Clutch, Brake, Horn

  1. Stand
  2. Steering
  3. Car
  4. Accident

हल (2): जिस प्रकार Clutch, Brake, Horn किसी गाड़ी के अभिन्न अंग हैं उसी प्रकार Steering गाड़ी का अभिन्न अंग होते है।

Recently Added

Chemical Reactions and Equations

Available Educational Materials