Tuesday, November 19, 2019

वास्तविक संख्याएँ

कक्षा X
प्रश्नावली 1.1

प्रश्न 1. निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए
(i) 135 और 225 (ii) 196 और 38220 (iii) 867 और 255

(i)
हलः
प्रश्न से स्पष्ट है कि
225>135
यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग करने पर
225 = 135x1 + 90
135 = 90x1 + 45
90 = 45x2 + 0
यहाँ शेषफल 0 प्राप्त हुआ।
अतः 135 और 225 का HCF = 45 Ans.

(ii)
हलः
प्रश्न से स्पष्ट है कि
38220>196
यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग करने पर
38220 = 196x195 + 0
यहाँ शेषफल 0 प्राप्त हुआ।
अतः 38220 और 196 का HCF = 196 Ans.
(iii)
हलः
प्रश्न से स्पष्ट है कि
867>255
यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग करने पर
867 = 255x3 + 102
255 = 102x2 + 51
102 = 51x2 + 0
यहाँ शेषफल 0 प्राप्त हुआ।
अतः 255 और 867 का HCF = 51 Ans.

प्रश्न 2. दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रुप का होता है, जहाँ q कोई पूर्णांक है।

हलः
माना कि a कोई धनात्माक पूर्णांक है तथा b = 6 है।
तब यूक्लिड विभाजन एल्गोरिथ्म से, किसी पूर्णांक q≥0 के लिए,
a = bq + r
जहाँ r = 0,1,2,3,4,5 है क्योंकि 0≤r<6 है।
इसलिए,
a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5
हम जानते है कि कोई भी धनात्माक  विषम पूर्णांक  2 से विभाजित नही होता है।
अतः कोई भी धनात्माक  विषम पूर्णांक 

6q + 1 or 6q + 3 or 6q + 5 के रुप का होता है। Proved.

प्रश्न 3. किसी परेेड में 616 सदस्यों वाली एक सेना (आर्मी ) की टुकडी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करमा है। दोनों समूह को समान संख्या वाले स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं ?
हलः
प्रश्न से स्पष्ट है कि
a = 616 एवं b = 32
यूक्लिड विभाजन एल्गोरिथ्म से,
a = bq + r
616 = 32x19 + 8
32 = 8x4 + 0
यहाँ शेषफल 0 प्राप्त हुआ।
अतः HCF = 8
स्तंभों की अधिकत्तम संख्या = 8 Ans.

Sunday, November 10, 2019

1. Real Numbers

Real Numbers
Class X
Chapter 1
NCERT Text Book Solution
Exercise 1.3

Q.No. 1. Prove that √5 is irrational.

Solution:
Let √5 is a rational number.
Therefore,
√5 = a/b
Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.
So,
b√5 = a
Now squaring both side
5b² = a²
a² divisible by 5, therefore, a is divisible by 5.
Let a = 5c
Therefore,
5b² = 25c²
b² = 5c²
Hence, b² is divisible by 5, therefore, b is divisible by 5.
Therefore, a and b have at least 5 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that √5 is a rational.
So, we conclude that √5 is irrational. Proved.

Q.No. 2. Prove that 3 + 2√5 is irrational.

Solution:
From the solution of question no. 1. It is proved that √5 is irrational.
We know that product of rational and irrational number is irrational.
So, 2√5 is irrational.
We also know that sum of rational and irrational number is irrational.
So, 3 + 2√5 is irrational. Proved.

Q.No. 3. Prove that the following are irrationals:
(i) 1/√2
(ii) 7√5
(iii) 6 + √2

Solution:
(i) Let √2 be rational.
Therefore,
√2 = a/b 
Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.
So, b√2 = a
Now squaring both side
2b² = a²
a² is divisible by 2, therefore a is divisible by 2.
Let a = 2c
Therefore,
2b² = 4c²
b² = 2c²
b² is divisible by 2, therefore, b is divisible by 2.
Therefore, a and b have at least 2 as a common factor.
But this contradicts the fact that a and b are coprime.
This contradiction has arisen because of our incorrect assumption that √2 is a rational.
So, we conclude that √2 is irrational.
We know that quotient of rational and irrational is irrational.
So, 1/√2 is irrational. Proved.

Solution:
(ii) 7√5
From the solution of question no. 1 it is proved that √5 is irrational.
We know that product of rational and irrational is irrational.
So, 7√5 is irrational. Proved.

Solution:
(iii) 6 + √2

From the solution of question no. 3 (i) it is proved that √2 is irrational.
We know that sum of rational and irrational is irrational.
So, 6 + √2 is irrational. Proved.

Recently Added

Chemical Reactions and Equations

Available Educational Materials